Basic Logic Gates

A logic gate is a simple electronic circuit, which operates on one or more input signals to produce standard output signals. Logic gates are the basic building blocks of all the electronic circuits in a computer. All circuits in a computer are made by the combination of logic gates. Every operation within a computer is carried out by signals passing through these logic gates. A few gates are discussed below:

There are seven basic logic gates: AND, OR, XOR, NOT, NAND, NOR, and XNOR.

The basic operations are described below with the aid of truth tables.

AND gate






The AND gate is an electronic circuit that gives a high output (1) only if all its inputs are high. A dot (.) is used to show the AND operation i.e. A.B. Bear in mind that this dot is sometimes omitted i.e. AB
 
OR gate

 





The OR gate is an electronic circuit that gives a high output (1) if one or more of its inputs are high.  A plus (+) is used to show the OR operation.

 
The NOT gate is an electronic circuit that produces an inverted version of the input at its output.  It is also known as an inverter.  If the input variable is A, the inverted output is known as NOT A.  This is also shown as A', or A with a bar over the top, as shown at the outputs. The diagrams below show two ways that the NAND logic gate can be configured to produce a NOT gate. It can also be done using NOR logic gates in the same way.

 
This is a NOT-AND gate which is equal to an AND gate followed by a NOT gate.  The outputs of all NAND gates are high if any of the inputs are low. The symbol is an AND gate with a small circle on the output. The small circle represents inversion.

NOR gate




This is a NOT-OR gate which is equal to an OR gate followed by a NOT gate. The outputs of all NOR gates are low if any of the inputs are high.
The symbol is an OR gate with a small circle on the output. The small circle represents inversion.

EXOR gate



 





The 'Exclusive-OR' gate is a circuit which will give a high output if either, but not both, of its two inputs are high. An encircled plus sign () is used to show the EOR operation.

EXNOR gate




The 'Exclusive-NOR' gate circuit does the opposite to the EOR gate. It will give a low output if either, but not both, of its two inputs are high. The symbol is an EXOR gate with a small circle on the output. The small circle represents inversion.


The NAND and NOR gates are called universal functions since with either one the AND and OR functions and NOT can be generated.

Note:

A function in sum of products form can be implemented using NAND gates by replacing all AND and OR gates by NAND gates.
A function in product of sums form can be implemented using NOR gates by replacing all AND and OR gates by NOR gates.

No comments: